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The existing approximate solutions of this problem are based on
the use of predetermined velocity profiles in transverse sections of
the flow'?, The present article prfoves that a solution can also be
obtained by strict integration of equations dealing with the boundary
layer.

1. Integral Relations and Posing of the Boundary Value Problem

We shall use a cylindrical system of coordinates z, R, and o,
and shall consider the jet emerging in the direction of the Oz axis--the
axis of symmetry--from a round aperture with a radius R; into a co-
axial flow of the same fluid, uniform and one-dimensional at infinity,
and possessing a velocity Uy, parallel to the Oz axis. Both in the exit
cross section of the jet and in the cross sections of its potential core,
we shall consider the velocity as being the same--parallel to the Oz
axis and equal to U;. The region of turbulent mixing is separated
from the jet core by surface A A' B B' C, and from the external
potential-flow by surface A A' D D' H H' (see figure, below). The
radii of these surfaces of revolution are designated, respectively, R
and R,. The region of turbulent mixing, as usual, shall be divided into
an initial sector, which extends from section A A' to the end of the
core, and the main section, which lies beyond the end point C of the
flow core,

lH. B. Squire and I. Trouncer, ROUND JETS IN A GENERAL
STREAM, Reports and Memoranda, A.R.C., 1944, No. 1974.

2G. N. Abramovich, THEORY OF TURBULENT FLOWS (Teoriya
turbulentnykh struy), Fizmatgiz, 1960.




If we overlook changes in the jet pressure and consider the mean
flow as established, we can obtain relationship3’4

R; R,
2 f pVz'RAR - 20Uof pVzRAR = pU; (Uy - Ug) vRy*,  (1.1)
0 0

which reflects the law of the conservation of linear momentum (where
p is the mass density of the fluid and V, is the mean value of the
longitudinal component of velocity at point z, R). However, instead of
using the mean components of total velocity, V, and VR, it is more
convenient to use the components U and V, defined as

U=V, - U, V = VR . (1.2)

By substituting (1. 2) in (1. 1), we get the corresponding equation
for the conservation of linear momentum expressed in terms of (1. 2):

R, R,
2nf pU?RAR + 27Uof pURAR = pU; (U - Ug)wRi*. (1.3)
0 0

We shall assume the following boundary conditions: a smooth
transition of longitudinal velocity at the jet boundary to a velocity of
a uniform, unidirectional flow, and the continuity of the flow along its
axis (M-const)--

U

— =0,V = 0, = =0.
U R:0<M’ 0R |IR=0 R=0 0, U R=R; dR R=R, 0
(1.4)
2. Dimensionless Equation of Motion
We select radius R; of the exit cross section as the scale of
length and the corresponding velocity U; at the exit point as the scale
of speed. Passing to dimensionless variables, we get:
.z _ R _ R
x =R r—-ﬁ, rz—ﬁ-l-, etc; (2.1)

3Squire and Trouncer, loc, cit.
4Abramovich, loc. cit,




. v,

U _ Vv
UZ_'—[-J'T’ u—_'[-_j'—l, U—'U—l, etc, (2.2)

The quantities J; and Q;, having dimensions of momentum (flux)
and mass (flux), are nondimensionalized using Jo and Qg, the momentum
(flux) and mass (flux) at the exit cross section.

Thus: Jo = pUzlﬁRf, Qo==pU1an, (2.3)

and the corresponding dimensionless quantities are

A Ji o= Qi (2. 4)
i = —1l q . .
17 pUnR2’ 1 pUmR?

Dividing both parts of equation (1.3) by pUlz'n'Rlz and using (2. 1)
and (2. 2), we obtain the following statement of conservation of

momentum:
ra ra
19)
26'- uzrdr+2)\af urdr = 1 - \ ()\=:[-J-°1—) . (2.5)

For an established mean flow of an axisymmetrical jet, ignoring
changes in pressure and using Prandtl's formula for turbulence friction,
we obtain the following equationss:

Vg vy _ 1 3 2 (avz)z
Va az+VRaR"'E'a'§[RZ 3R | |’
(2.6)
5, TR TwR OO
which may be restated in terms of (1.2) as
ou ouU U 1 9 2 (U2
(2.7)

oU oV \2
7z Tw TR Y

51.. G. Loytsyanskiy, FLUID AND GAS MECHANICS (Mckhanika
zhidkosti i gaza), Fizmatgiz, 1959.




where | is the mixing length in the main section of the jet, regarded
as being proportional to R, stated® as

l = cR, (c-const). (2. 8)
Substituting (2. 8) into (2.7) and using (2.1), (2.2), and (2.5) as well

as taking into account that R, is a function of z only, we get the follow-
ing equations for the main section of the jet:

du Ju ou _ 2 2| 1 (oul? du 3%
A I + u = + v I - c“r, [—r (——ar) + 2 FEd ——arz] , (2.9
du ovu v
~ + A + = = 0. (2.10)

3.  Criterion of Similarity

The gencral character of the mean flow at large distances
from the exit section of the jet ought to be determined by the quantities
J, Uy, and p from which, however, itis impossible to construct a
dimensionless parameter (J, the total momentum of the jet). From
(1.1) we have J = pU, (U; - Ug) 7R,*>. From this and (2. 3) and (2. 5)
it follows that

J=Jo (1-N. (3.1)

Therefore, the assignment of a value to J is reduced to assigning
values to Jy and to \, and--as stated previously--the determining
factors here are \, Jo, Up, and p, from which it is impossible to
deduce any dimensionless parameter other than \ itself.,

For this reason, the criterion of similarity of mean flows in two
turbulent jets, 1 and 2, is the existence of the following condition:

D2y (3.2)

One of the conclusions which can be drawn from (3. 2) is the well-
known fact that all turbulent jets emerging into a stationary fluid are
dynamically similar (for all such jets, A = 0). As is known, the laws
governing the motion of the fluid (in the mean) in turbulent jets

6Squire and Trouncer, loc.cit,
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emerging into a homogenous collinear flow "8 depend primarily upon the

value of \.

4.  Form of the Bounding Surface of the Turbulence Area

Let us consider that the equation of boundary surface of a
turbulence area can be given in the form of a series

r;_=axk+“,_ (4. 1)

(On the right side of this expression is entered only the leading term of
the expansion of r, in powers of x, wherea is a dimensionless coeffi-
cient.)

Introducing the quantities
ra T2
_ 2 2\ _ 2 2 2 2
<u>— r_zi,/. urdr, <u> = ?z—f u“rdr = § <u> (4. 2)
0 0

we may write (2. 5) in this form?;

<u>2 < ) - SRR (4. 3)

g2r?2

where (u) and (u?) are clearly mean quantities associated with flux
of the fluid (mass) and flux of momentum. [In (4. 3) the coefficient §,
which, accorlding to (4. 2), takes into account the difference between

(u) and <u2> 2, is close to 1.] From the quadratic equation (4. 3) it
follows that

<u>=-i+<xz +1'X)2 (4. 4)

287 \4g*  £,?

[

Since the turbulence area spreads as the distance from the exit
section increases, it follows that when \ » 0 and when the distance
from the exit point is also sufficiently great, the second summand
under the radical in (4.4) becomes much smaller than the first one,

7Squire and Trouncer, loc. cit.
8Abra.rnovic:h, loc. cit,
9Here and in all that follows, ( ) designates means.




Expanding the radical in a series of powers of r2" %, we get:

ai az
uly=z — + — + ... s ar> = a NI (4. 5
< > rzz 1‘24 2 2 ( ) )

From (4.5) there follows an estimate of the order of magnitude of u
when x is large:

(u) ~ "2 . (4. 6)
In estimating the mean value of v with the aid of (2. 10), we find

(v) ~ (u)r2/x. (4. 7)
In estimating orders of magnitude for the various terms, we take'°

d 1 0 1 1
ex(u) v~ (V) wme T mYER T

1
r_z .

And in estimating the order of magnitude of various individual summands
of the left-hand side of the equation of motion (2. 9) and using (4. 7), we get

du  (u) u du - (u)? ou - (u)?

ox x ox x ' or x

. (4. 8)

From (4. 6) and from the fact that r; increases with x, it follows
that when x is sufficiently large, <u> is small, hence,

<u)2<(u>. (4. 9)
The expressions (4. 8) and (4. 9) lead to the estimate

ox or ox

which shows--along with (4. 8)--that the left-hand side of the equation
(2.9) is on the order of x ™! <u>. Both summands of the right-hand
side of equation (2. 9) are of the same order, rz'l u>2. Comparing

the orders of magnitude of both sides, we get

<u> ~ Tox . (4.10)

07, D, Landau and E. M. Livshits, MECHANICS OF CON-
TINUOUS MEDIA (Mekhanika sploshnykh sred), Gostekhizdat, 1954,




And from (4.10)--as well as (4. 6) and (4. 1)--it follows that
rzzaxl/3+.... (4.11)
Substituting (4.11) into (4.5), we find
(u)y=byx % +b,x™ + ..., bi=bi(\). (4.12)

From this it can be assumed that all dimensionless functions
defining jet flow are representable in series of powers of x~%3 ., (This
is, in fact, later confirmed.) Hence,

r2=a(N)[xB+BNxB +y0)xT L] (4.13)

The initial series (4.5) is valid when X\ is sufficiently greater than
0 and when the values of x are sufficiently large. For this reason, an
adequate correlation of the resulting series can be expected only
within the range of the values of X\ and x as indicated above. When X\ is
close to zero, if is difficult to estimate the order of magnitude of the
summands under the radical in (4.4) or to determine the type of series
for {u). As a result, one cannot successfully solve this problem when
X is close to zero. For the case of an axisymmetrical jet emerging
into a stationary fluid (i.e., for the case when A\ =0), there exists the
Tolmin solution'!. Index k in equation (4. 1), defining the contour of
the boundary surface, in this case equals 1. It is obvious that in the
range of small values of \, the power index k in equation (4. 1) varies
from k =1 when X\ = 0to k = 1/3, for levels of X\ for which the solution
given here already applies.

5.  Expansion in Series of the Equations of Motion and
of Those Defining Boundary Conditions
Equations (2. 10), (4.12), and (4. 13) show that dimensionless

flow function {, which is connected with the components of velocity u
and v by the equations

w= L 9 v= - LY (5. 1)
r or r

can be found in the form of an expansion of

Go= gy + kbzx-% +tax Tt (5.2)

NAbramovich, loc. cit.




Here the functions {; depend only on the variable n, which is
determined by the equation

r r

) ; ) alxl/3 + ﬁx'1/3 + yx'l+...l

=—£lx—l/3-ﬁx‘1+(ﬁz—y)x's/3+...| . (5. 3)
a

With the aid of equations

411* =~ 4‘1 , ¢2>}< - qJZC 4/3’ L|J3* = ¢3C 8/3 e, (5.4)
ak = (1C-2/3 Bk = ﬁc4/3 s -Y* = yc¢ 8/3 o ey (5. 5)
= xe?, 9 () /0x = ¢t (... /ox (5.6)

it is possible to convert to new dimensionless functions {* as well as
to coefficients a%, B%, y* ... and the longitudinal coordinate x*, thus
excluding the structural constant ¢ from all equations.

By substituting (5.4), (5.5), and (5.6) in (4.13), (5.2), and (5. 3),

. q12
we find

r, = (1|x1/3+Bx’l/3+yx*-1+...l, (5.7)
b= g+ Pox B+ axtrr L, (5. 8)
n= a~ ! r [x'l/3 - ﬁx_l +(52 -y x~5/3 +, (5.9)

We now use (5.6) and (5.9) to obtain the following for our operations of
differentiation:

S LN L LR I | & (5.10)
Lo (@) [ e (e
+. ]”a‘dﬁ}' (5. 11)

2For the sake of simplicity, from now on we shall omit the
asterisk from yj, Yz, Y3, a, B, y, and x. These values will be
presumed to be those defined by equations (5.4), (5.5), and (5.6).

8




With the aid of (5. 2) and (5. 8) through (5. 11), we obtain the
necessary series

u = iz {@,x7%5 + [ &, - 2p2/]x" % +[3; - 2p%,
a

+(382-2y) @ x2 +...}, (5.12)

1}

g: —13 jorx=! +[2 - 362, x5 + [8y' - 3p8,!
a

(682 - 3y) '] x~ B + ...}, (5.13)

+

d7u 1 . i
'5'2"1',' - = { B,"'x 4/ + [¢2n - 4B¢ln]x 2 ¥ [¢3n _ 4B¢zn

+(10B2 - 4y) 8" x5 + ...}, (5.14)

2
%% = o {00 - 201 x5 + [~ @' - 40, + 560 + 85 x T

+[-®3'n - 6@3 + 5B%,'n + 128, - (1482 - Ty) C1'n

- (18B2 - 124) ]x"3 + ...}, (5. 15)
2
U = %{Lpl'x‘% + [4;,} - 3By + -Z-:E]E] x™?
O T o RN S O

wherein, for purposes of brevity, are introduced--alongside the
functions {;--also the functions

él:kl.li’/n. (5'17)

The prime mark (') used in (5. 13) through (5. 17) and everywhere
hereafter indicates the derivatives for n.

By substituting (5.7), (5.9), and (5. 12) through (5. 16) into the
equation of motion (2. 9) and then adjusting the coefficients for equal
powers of x in both the left-hand and the right-hand parts of this




equation, we obtain a group of ordinary differential equations for
functions y;--as well as for functions ®;, which are connected with
the former by (5. 17).

Thus, in adjusting the coefficients for x'5/3, we get the following
equation for the function &;:

1/3 )\0.3 [@an]l - [@1121,]] v, (5. 18)

After adjusting the coefficients for x~ /3 and using equation (5. 18),
we can obtain a differential equation for function 5,

2 2 '2
—5 [&'®'n]" - % [bo'n + 242]' = 5 ip:]— + %E [W1'n]" (5.19)

while adjusting the coefficients for x"? and using (5.18) and (5.19) leads
to a differential equation for function s,

3 3
[280®5 0] - X [gain+as] = 298 [pon] + 2napye

H,12 1 2a t )\a3 2 ! !
- [®2% 0] - = 2@ - == (B2 + y) [d1'n]

8a ZafB y'2
+ —= '$, -
3 b2'® 3 n

(5. 20)

From (5. 3) it follows that the flow axis on boundary rn has the
following values:

Mr=0 =0, Me=r, =1 . (5.21)
Converting the foregoing to dimensionless values with the aid of

(2.1) and (2.2), for conditions of (1.4), and using (5.21), we get the
following boundary conditions:

u |T]:0 <M, — = 0, Uln:O = 0: u 'r]:l = O:

(5.22)

| =0 (M = const) .

10




We now substitute (5. 12) into (2.5) and with the use of (5.9), (5.17),
and (5. 21) find that the left-hand part of (2.5) contains terms with x?,
x"%3, x™%5,.., while the right-hand side contains one term with x°.
Adjusting the coefficients for equal powers of x on both sides of the
equation, we get

l 2
= 4’1' + A2 dn = 0
Uyt dn=1 -2, 2!l dnm
0

1

0
(5.23)

1
f[zww B, ws'] an =0

2
a II
0

Substituting series (5.12), (5.13), and (5. 16) into (5. 22), using
(5.17) and adjusting the coefficients for similar powers of x in the
left-hand and right-hand sides of the resulting expressions, we find
the boundary conditions for functions ®; and {; to be as follows:

@lln:o <I\/I=const, ®1‘|n20 = O; 4J1'|1—]:o = O; LIJI‘IT]:I = Oy

quan]:l = 0; 0 <M, ézln:o = O’ LIJZIIT]:O — 0,

Q.Z |n:

n~ 2 In:o =0, {2'fp=1=0, Lllz”|n:1 0; ‘I’sln:o <M, (5.24)

‘I’3'|q:o =0, Ys'ly=0=0, n_l%lnzo =0, lJJ3'|11=1 =0,

I
o

3”|T]:1 -
6. First Approximation
Integrating (5. 18), we get
1/3)\a3®1n2 = @l'zn + C1 . (6. ].)

By assuming, in (6.1) that n = 0 and using (5. 24), we find that
the integration constant C; = 0, whereupon (6. 1) takes this form:

®'% = Ysna3®y 7. (6.2)

11




In the cross sections of the flow gu/dr < 0 (assumingX <) and
a > 0. Therefore, it follows from (5.13) that &' < 0. Taking this
into account, and extracting the root from both parts of (6.2), we get:

o, = _J Yha®ne, . (6.3)

Integrating (6. 3) for n, we find @, 2 = c, —v1/27)\a3n3 . From this
it follows, by using (5. 17) that

2 2
' =8 =" [Cz - \J 1/27)\(13-713, or yi' = Yherraln ll - n3/2l . (6.4)
Integration constant C, was determined under condition ;' lﬁzl‘: 0.

Constant a is determined from the integration condition (5. 23)
into which we substitute (6.4) and on computing the integral find

a=[105(1 -2 /A% | (6. 5)

With the aid of (6.4) it is easy to see that all remaining conditions
of (5. 24) are thereupon automatically satisfied.

7. Second Approximation

With the aid of (6.4), we get

16
13 4

(7.1)

By integrating (5.19) and utilizing (7. 1), we get the following
equation:

2 N B x at 16 5
P,1P,! - 'n + S - 5 /2
12 16 1
+—5-“3'ﬁ‘19/”rn"]+nl- (7.2)

If we assume in (7. 2) that n = 0 and use (5. 24), we see that the

integration constant D; = 0. Taking this into account and using (5.17)
and (6.4), we obtain from (7. 2)

12

1
X1 = - —= 3. e a2 =yt
J dn 5739 1 n7z + T n? n’/2 + n ] + const,



(1 - n%2) (g2 m-d2') + 20"z (G2 +2y,) =- l—lg Na’pn 2 (1 - n3/2)2

1 i) 16 5, 12 5
2-243“"2(1'7””‘5—"

16 9/. 1 6)
—-ﬁnZ'f'-Z—T] - (7.3)

The coefficients of the linear differential equation (7. 3) and its
right-hand side are polynomials, the subsequent terms of which contain
1 in a power which is greater by %/, than the preceding term. The
structure of the polynomials is such that a general solution of equation
(7.3) can be sought in the form of a product of n '2 and an infinite
series in powers of /. It is easy to see that the infinite series in

the present case becomes a polynomial, and that the solution looks as
follows:

P2 = Am?+ A"+ Asn® + Ayl + Asn® . (7. 4)

Here, A represents the dimensionless constant coefficients (All
A are alike in that they are equal to zero, wheni > 5). Solution of
(7.4) satisfies all boundary conditions of (5. 24) when n = 0. By
substituting (7.4) in (7. 3) and adjusting the coefficients for the highest
power of 1117/2 in both parts of the equation, we find

1 4

As = gooT M

(7.5)

Adjusting the coefficients for n7, nn/z, 714: and ns/z and utilizing,

consecutively, (7.5) ... , (7.6), we then get:
_ 4-31 4 _ 58 4, 1 3
Ae= - s M As= opgear M tgr NP
(7. 6)
250 e 2 3 ] s 1 4
As = - —— P %, Ayl = ——— +
2 7357121 *® " 8T P 1= 75511 M Tgp e

To determine constant 3, we shall now turn to the integral
expression (5.23), which on the basis of {; ln = o and of (7.1), assumes
this form:

_ 1 Py 'l _ rat
Y2ln=1 = - a2 n an= - 135713 (7.7

13



From (7.4) and (7. 7) it follows:

rat
Substituting expressions (7.5) and (7. 6) into (7. 8), we get
B=- 22 a=-0.024793 a . (7.9)

And by using (7.5), (7.6), and (7.9), we find

A,

- 2.9475-10"%*na?, A, =2.0730-10"*\a%, A;=8.8426-10"%\a*
(7.10)

Ay=-1.0813-10"*\a*, As=1.5588-10""na* .

(7.4) and (7. 10) will prove to us that the remaining boundary
conditions (5. 24) are satisfied automatically.

8. Third Approximation

Equation (5. 20) is integrated in the same way as equation
(5.19) for the second approximation. The solution appears as a
polynomial, thus

J3 = Bl’qz + B2n7/2 + B3n5 + B41‘|13/2 + Bsns + B6n19/2 + B—mll (8. 1)

wherein the coefficients have the following values:

By, = - 4.8905-10"%\a®, B, =5.8683-10"%d°,
By =-1.9689-10"%a®, By=-5.9013-10""na’,

(8.2)
Bs = 5.0840-10" "Aa®, By = - 1.3244-10" "\d°,

B, =1.0291-10"%a°.

From the integral expression (5.23), we determine the constant v

- 10- 4.2
y = -2.2010-10" *a (8. 3)

We also determine another value which will be needed later:

sl ger = Brt Bat ... + By;=-1.1950-10"%%q%. (8. 4)

14




9. Basic Characteristics of the Flow

The excess expenditure of fluid Q through the cross section of
the flow is determined by the equation:
R>

Q= ZTrpf URdR . (9. 1)
0

Dividing (9. 1) by pU;nR;? and using (2.1), (2.2), (2.4), and (5.1),
we obtain an expression defining this dimensionless excess expenditure
as follows:

R, R>
q=2f urdr=2f %—Lp;dr:Z[q;(x, rz) - ¢ (x, 0)]. (9.2)
0

0

If we assume that quI n=0 = 0, which can be done because {i; can be
accurately determined up to the point of an arbitrary constant (see
paragraph 6), and if we also use the conditions {5 'ﬂzo = ¢3l n=0 = 0,
we can get from (9. 2), (5.8), and (5.21)

q=2 [q.lll-q:l + lizIn:l X"z/3 +L|J3|n:1 X'4/3 +...| (9. 3)
while it follows from (5. 23) and the condition Lpll n=0 = 0 that
1 -
= .4
Y1ln=1 Zx (9. 4)
We now introduce the value X with the aid of this equation,
X = xkgk= = xcza*‘3/2 s (9.5)

and by using (9.4), (7.7), (8.4), (6.5), and (9.5), we obtain from
(9.3

- 0. 00025095
1 -2 1 - 0.019231 2509 . ] (9. 6)

X2/3 X 4/3

q:

With the aid of (5.7), (6.5), (7.9), (8.3), and (9.5), we find:

15




B 0.0
. = 105)(\1 \) [Xl/a_ 0.024793 0022010

- +] (9.7)
X3 X

By assuming n = 0 in (5. 12) and using (5.17), (6.4), (6.5), (7.4),

(7.9), (7.10), (8.1), (8.2), (8.3), and (9.5), we find the excess
dimensionless axial velocity of the flow as being

(9.8)

. 0. 2470 . 00
o = A [o 037037 N 001247 . 0 0045592 N ]
x x5 x*

while if we assume M = 1 in (5. 16) and use (5. 24), (6.5), (7.7}, (7.9),
(8.4), and (9.5), we obtain an expression for the dimensionless
transverse component of velocity at the flow boundary v°:

(9.9)

3 2

. c®x [0.00018315 0.0000093208 ]
v° = - + +...
X x &3

Let us determine the profile of longitudinal velocities as defined
by two first approximations. Retaining the first two terms in (5. 12)
and using (5.17), (6.4), (6.5), (7.4), (7.9), (7.10), (9.5), and (9. 8),
we get

M. ll - Tﬁ/.zl2

, =0 01225802 +0. 0278641~ 0.0189811%2 +0. 0033757

(9.10)
x%

Retaining in the right-hand side of (9. 10) the one first summand,
we obtain a velocity profile determined by the first approximation.
Experimentally determined profiles are close to this theoretical
profile!®» ! | The second summand of the right-hand side of (9. 10)
turns out to be negative for the entire interval of 0 < n <1. This means
that the velocity profiles defined in the second approximation are some-
what "sharper! than the velocity profile obtained in the first approxi-
mation. It must also be borne in mind that the second summand
becomes appreciable only when the value of X is very small. Generally
speaking, at a great distance from the exit cross section of the flow,

13Squire and Trouncer, loc. cit,
“Abramovich, loc. cit.
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it is sufficient--in all the expansions obtained--to retain only the first
terms, resulting in very simple expressions. Subsequent approxi-
mations need to be taken into account only to determine the flow profile
at the beginning of the main section of the jet flow.

10.  Starting Point for the Longitudinal Coordinate

In the solution as found above, one thing remained undetermined
and that was the starting point of coordinate z. A rational choice of
such a starting point and determination of its position with respect to
the exit section of the flow can be made only after a solution for the
initial section of the flow has been obtained and coupled with the solu-
tion for the main section.

The position of the starting point of the coordinate z with respect
to transverse section 1, passing through the end C of the core of the
flow (see figure), can be determined as follows.

Let us designate the coordinate of section 1 as zg (corresponding
to the dimensionless coordinates xg, xp%, Xp). The dimensionless
excess axial velocity in section 1 equals 1 - X:

w!=1- . (10.1)

Substituting X = Xy in (9. 8) and using (10. 1), we obtain the
equation

0.037037 . 0.0012470 , 0.000045592 1 - (10.2)
3 s * 0 - *
X /3 (X2/3) 2 (X 02/3) A

which serves for defining X,. After determining X, and substituting

X = X in series (9. 6) through (9.9), it is possible to find the basic
flow characteristics in section 1. However, we refrain from doing so
at the moment, because the flow parameters in the transition section

1 can be determined more accurately after the coupling of the solutions
for the main and the initial sections of the jet flow.

Received for publication: February 9, 1965.
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